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ABSTRACT

We define a simple model of a map and formulate geometrical integration as a transformation problem between one idealized true map
only known partially and multiple realizations of the map perturbed by random noise and unknown systematic effects.
In the statistical model the connection between the true map and its realizations is interpreted as a multivariate spatial random process
and further investigated by geostatistical and classical estimation methods. As a main result a model of the distance-dependent relative
accuracy (neighborhood accuracy) in spatial datasets is obtained. On the basis of this statistical hypothesis two models for the estimation
of the true map, namely intrinsic kriging and collocation, are suggested.
As an alternative to the stochastical model we suggest the deterministic model of the topology of the euclidean plane where the
connection between the maps is treated as a homeomorphism. The consideration of constraints in form of a bijection for homologous
points and nonlinear functions for geometrical constraints leads to the formal definition of the homogenization of maps.
An extension of the collocation model allows us to estimate the unknown parameters (coordinates) in the system of the true map and to
simultaneously consider geometrical constraints, the linear trend, the nonlinear signal and the random noise. Due to the high density of
its design matrix the suggested model is unsuitable for practical applications with mass data.
The hybrid approach of Benning appears to be an optimal compromise between the extended collocation model and other alternatives.
It has the advantage that statistical least squares methods can be combined with (efficient) deterministic interpolation methods and
furthermore leads to a sparse design matrix.

1 INTRODUCTION

The increasing degree of syntactical interoperability in GIS and
spatial data-infrastructures enables the combination of data from
different sources and providers. These datasets, though syntacti-
cally integrated, may comprise heterogeneity at the geometrical,
schematical and semantical level (Laurini, 1998).

2 GEOMETRIC HETEROGENEITY IN FRAGMENTED
DATASETS

Geometric heterogeneity is observed in fragmented datasets, where
the two cases of zonal or horizontal fragmentation and layer or
vertical fragmentation can be distinguished (Laurini, 1998, Gröger
and Kolbe, 2003, Kampshoff and Benning, 2005).

Zonal fragmentation typically occurs when thematically similar
data are captured independently by different organizations (local
authorities, states etc.) and no organizational framework like a
commitment to a common fixed border-geometry is arranged be-
forehand.

An example for zonal fragmentation is given in fig. 1. In this
case, the homologous geometries (points) from different data sources
do have varying coordinates. Furthermore, homologous lines
may intersect, neighboring areas can overlap each other or gaps
in tessellations can emerge when fragmented data are superim-
posed. The simple (purely syntactical) integration of zonally frag-
mented datasets can therefore lead to geometrical and topological
inconsistencies.

Layer fragmentation occurs when a base-map (base 3-d model),
as external part of an integrated multi-layer dataset, is replaced
by a novel or updated version (positional accuracy improvement,

Figure 1: Varying coordinates of homologous points
from fragmented datasets

PAI). In this context the term external indicates, that the base-map
has been captured and updated by an external organization, e.g.
surveying agencies or other data providers. On the other hand
the remaining user-layers are usually captured and updated by an
operating company from e.g. the utility or telecoms sector. The
data capture of the user-layers is commonly done relative to the
base-map layer, which results in a high relative inter-layer spatial
accuracy.

Thus, the associations between spatial objects in multi-layer datasets
are of a less explicit nature, than those in the case of zonal frag-
mentation. In particular, they can not be detected entirely by
the standard transaction rules for geometric consistency in GIS
(Gröger and Plümer, 1997, Gröger and Plümer, 2005). In general
there is no direct relation (incidence, congruence) between het-
erogeneous geometries from different layers. Instead, the inter-
layer geometrical and topological relations are only given implic-
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itly through the coordinates of the geometries. In special cases
the relative position of multi-layer geometries is given by dimen-
sioning objects (cf. fig. 2).

The spatial dependency in multi-layer spatial datasets is also called
associativity. The maintenance of the multi-layer consistency
during base-map updates is hence called associativity problem
(Wan and Williamson, 1994a, Wan and Williamson, 1994b, Scheu
et al., 2000).
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Figure 2: Geometric heterogeneity of a network model
and an updated base-model

3 THE PROCESS OF GEOMETRICAL INTEGRATION

The example given in figure 2 is from the 2-D GIS domain, but
the described problems of geometrical interoperability can ob-
viously be transferred to the domain of 3-D city models in a
straightforward manner. In both domains it is necessary to over-
come geometrical heterogeneity by an adaptation of the coordinate-
geometry that we call geometrical integration or homogenization.

Geometrical integration should be seen in the broader context of
spatial database integration as described in (Laurini, 1998, Parent
and Spaccapietra, 1998). Before the core steps of geometrical
integration can be performed, a general schema integration and
correspondence analysis has to be done and semantic conflicts of
the datasets should be solved on the model level.

As three core steps of geometrical integration we identify the

• correspondence problem for homologous spatial objects from
multiple maps (instance level),

• the identification of single and multi layer implicit spatial
relations (associativity) and

• the computation of a transform that warps heterogeneous
source datasets into one consistent target dataset.

The procedure can be followed by a non-geometric feature inte-
gration between corresponding classes and attributes. A detailed
use case analysis as well as corresponding process models and al-
gorithms for geometrical integration can be found in (Kampshoff,
2005).

The remainder of this paper deals with mathematical models for
the transformation step of geometrical integration.

4 FORMAL MODEL OF A 3-D MAP

We define a map K, as a description of a fixed state of the real
world by points and connected sets of points of a mathemati-
cal space. As embedding space for 3-D city models we use the
euclidean<3. The map may consist of four sets K = (P, L, S, V )
of points, lines, surfaces and volumes, that are given in form of
a continuous parameter function which ensures the topological
connectivity of the elements of L, S and V .

We distinguish between a unique true map Kw of K, whose
points represent a fixed state of the real world exactly, and one or
multiple realizations k of K, which emerge from measurements
of limited accuracy (soft data).

The points of the true map, which are also called hard data, are
not available in practice. Instead the best available values are
used. The cost of the determination of such (quasi-)true values is
high, they are known for a small subset of points only.

The process of realization assigns exactly one point of the real-
ization xk ∈ k to each point of the true map x ∈ Kw ⊂ <3 and
thereby fulfills the characteristics of a mapping (Fischer, 1989).
For the mapping T of the realization we have

T : Kw → k, xw 7→ T (xw). (1)

4.1 Geometrical integration in the map model

The variable source datasets are modeled as realizations k of the
map K. In the case of zonal fragmentation we have a set of
neighboring realizations k1, . . . , kl containing some homologous
points that link the borders of the realizations whereas in the case
of layer fragmentation the realizations do strongly overlap each
other.

The problems of geometrical integration are caused by the fact
that the coordinates of the realizations of different datasets are
based on different measurements and adjustment techniques. The
coordinate values are perturbed by unknown irregular errors, which
results in the described contradictions between spatial objects
from fragmented datasets.

What is needed for the solution of geometrical integration is a
model and an estimation procedure for the mapping T : Kw → k
from incomplete data. In practice we will have multiple realiza-
tions k1, . . . , kl and one incomplete true map Kw. The formal
aim of geometrical integration can thus be described as the inver-
sion of the realization-process (T−1) and finally the estimation of
the unknown coordinates of the complete true map of K.

In the following we discuss various stochastic and deterministic
approaches as possible models for T . For a complete derivation
of the approaches we refer to (Kampshoff, 2005).

5 STOCHASTICAL MODELS FOR GEOMETRICAL IN-
TEGRATION

5.1 Maps as spatial random processes

In the stochastical model the coordinates {xk
i } of a realization k

of a map K are treated as realizations of a 3-D random process.

The points of the true map Kw correspond to the domain of the
random process

{x : x ∈ D ⊂ <3}. (2)
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For each position x0 ∈ D we define a m-dimensional vector of
observations called regionalized variable, representing the m =
3 observations at the position x0 with

{|z1(x), . . . , zm(x)|′ = z(x), x ∈ D}. (3)

The vectors of regionalized variables are treated as outcome of
a vector field of random variables, where one random vector of
m = 3 random variables (Z1(x0), . . . , Zm(x0)) is attached to
each position x0 of the domain. Hence the regionalized vari-
able is a realization of a vector random function (also: random
process)

{|Z1(x), . . . , Zm(x)|′ = Z(x), x ∈ D}. (4)

The transition from the random process to our map model is
achieved by interpreting the points of the realization of a map
k as realizations of a random process. Each position x ∈ D is at
the same time a point x := xw of the true map Kw. The process
of the realization of the random field does therefore correspond
to the definition of a mapping T between the true map and its
realizations, because with

Z(x)
Realization−→ zk(x) := xk (5)

we have one vector of observations xk ∈ k for each position
x ∈ D. In the stochastical model of the map we thus have direct
observations for the coordinates of the domain D.

5.2 Stationarity in the map model

For a description of the theory of (geo-)statistical stationary ran-
dom processes we refer to (Wackernagel, 1998). We assume, that
the multivariate distribution of the random vector is symmetric
and has got a single unique maximum. Then for the expectation
value of (the random process) of a map we get

E[Z(x)] = µ(x) = xw = x. (6)

It is further possible that a random process is given, whose expec-
tation values are given through bijective, differentiable functions
of the positions of the true map by

E[Z∗
i (x)] = hi(x

w, βh). (7)

In both cases the expectation values of the random functions are
neither stationary nor intrinsically stationary. To retrieve an in-
trinsically stationary random process we define the residual func-
tion of the random process, which is defined as the difference of
the coordinates to their expectation values (in the case of (6)).

R(x) := E[Z(x)]−Z(x) = xw −Z(x). (8)

The expectation of the residual function R(x) is stationary, as we
have

E[R(x)] = E[xw −Z(x)] = xw − xw = 0. (9)

The central moments of the residual function are identical to those
of Z(x), as they are related to the expectation value.

5.3 Absolute spatial accuracy

The absolute positional accuracy of a point xk
j of a realization

(map) k is defined as its distance to its true value (Croitoru and
Doytsher, 2003)

δ(xk
j ) = xk

j − xw
j . (10)

As an empirical measure of the mean absolute accuracy of a set
of n points the mean quadratic distance can be used with

∆abs
i =

∑n

j=1
δ2

i (xk
j )

n
. (11)

Per definition the absolute positional accuracy does not take into
account the relative spatial dependencies of points. Due to the
identity of true values and expectation values in our map model,
we can interpret the mean absolute accuracy (11) as an estimate
of the variance of the random function V [Zi(x)] = E[(Zi(x)−
xw

i )2] of a map with known expectation value E[Zi(x)] = xw
i

and location independent variance from a set of uncorrelated ob-
servations.

5.4 Relative spatial accuracy

For geometrical integration it is in particular important to have a
model of the associativity and local dependency of the points of a
map. This dependency emerges in an increased relative accuracy
(neighborhood accuracy) of neighbored points. In a set of points
we speak of a locally increased relative accuracy if the standard
deviation of the distance of two points grows with their distance.

5.4.1 Empirical measures of relative spatial accuracy An
empirical measure of the relative accuracy of two points xk

i and
xk

j of the realization k can be derived from the deviation of the
distance vector

d(xk
i , xk

j ) = xk
j − xk

i (12)

from its true value

δ(xk
i , xk

j ) = d(xk
i , xk

j )− d(xw
i , xw

j ). (13)

A mean value of the relative accuracy can be given by the mean
square deviation over all distances of a point set by

∆rel
i = 2

∑n

j=1

∑n

l=i
δ2

i (xk
j , xk

l )

n(n− 1)
. (14)

For the analysis of the distance dependency of the relative spatial
accuracy the empirical variogram can be utilized. In the empirical
variogram γ∗i the deviation γ∗i (djl) = δ2

i (xk
j , xk

l )/2 is drawn
against the distance d. The resulting graph is called variogram
cloud, an example is given in fig. 3.

The empirical variogram is derived from the variogram cloud by
the definition of a piecewise constant function on intervals of
equal length Dk. A locally increased relative accuracy leads to a
continuous enlargement of the differences and an increasing vari-
ogram function. For the opposite case of an almost constant vari-
ogram over all distance intervals there is no distance dependency
in the data.
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Figure 3: Variogram cloud of the residuals of layer-fragmented
datasets

5.4.2 Theoretical analysis of relative spatial accuracy The
statistical analysis is performed on base of the increment of the
residual random function

R(xj)−R(xi) = (Z(xj)−Z(xi))− hij (15)

with the distance vector hij = xj − xi. The increment can
be interpreted as the difference of the observed distance of two
points from their true distance. For the expectation value of the
increment of the residual function we obtain

E[R(xj)−R(xi)] = E[(Z(xj)−Z(xi))− hij ] = 0. (16)

We assume intrinsic second order stationarity for the random func-
tion of the residuals, so that the (theoretical) variogram of the
residual function is given by

γi(h) =
1

2
E[(Zi(x + h)− Zi(x)− hi)

2]. (17)

The theoretical variogram γi(h) of the residual function can be
interpreted as the variance of the i-th coordinate of the random
distance vector of two points. Thus we obtain a measure of the
relative accuracy of two points with

γi(h) =
1

2
E[(Zi(x + h)− Zi(x)− hi)

2] (18)

=
1

2
E[(Hi(x + h, x)− E[Hi(x + h, x)])2](19)

=
1

2
σ2

Hi
. (20)

With an estimate of the theoretical variogram γ̂i(h), which can
be computed from the experimental variogram γ∗i , we are able
to predict values of σ̂2

i (h) = 2γ̂i(h) as measures of the relative
accuracy in fragmented datasets.

If we do further assume full stationarity of order two for the
random process, we obtain the covariance function Ci(h) :=
C[Ri(x + h), Ri(x)] which is only dependent on the distance
vector h. The covariance function has a supremum at h = 0
with

|Ci(h)| ≤ Ci(0) = V [Ri(x)]. (21)

Given the covariance function we obtain the variogram from

γi(h) = Ci(0)− Ci(h) = V [Ri(x)]− Ci(h). (22)

Vice versa we can construct the corresponding covariance func-
tion from a given variogram if and only if there exists a finite
upper bound for the variogram γi(∞) with

γi(∞)− γi(h) = Ci(h). (23)

The dependence of the covariance function and the variogram can
be transfered to our problem of relative accuracy of the random
process of a map.

• If the spatial random variables of the points of a map are
spatially uncorrelated, then the relative spatial accuracy is
independent of the distance. A distance-dependent relative
accuracy can, in the stochastical model, only be explained
by a spatial correlation of the random variables.

• If the points are spatially independent (uncorrelated) and di-
rectly observed without systematical deviations (7), then we
have E[Ri(x)] = E[Zi(x)−xw] = E[Zi(x)]−xw = 0,
and the relative spatial accuracy is constantly equal to the
mean absolute accuracy of the point set.

• If the spatial correlation of the points decreases with increas-
ing point distance, then the relative accuracy γi(h) does as-
ymptotically converge to the variance Ci(0) = V [Zi(x)]
of the points.

The proves of these propositions can be found in (Kampshoff,
2005).

5.5 Estimation of T in the stochastical model

Equipped with a model of relative spatial accuracy for our map
we now discuss various possibilities for the determination of the
realization-mapping T as defined in (1).

The aim of the determination of T is the prediction of the residual
function r∗(x0) at positions x0 ∈ D for which a realization
xk

0 = zk(x0) ∈ k but no corresponding true coordinate xw
0 =

E[Z(x0)] ∈ Kw is known (cf. fig. 4).
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Figure 4: Prediction of the residual function in the stochas-
tical model

5.6 Intrinsic kriging with random error

Intrinsic kriging is used as an estimator in random processes that
do not fulfill the assumption of second order intrinsic stationarity.
Then the random function is composed of the stationary random
function of the residuals and an unknown drift function m(x) (cf.
7)

Z(x) = m(x) + R(x). (24)

It is assumed, that the drift can be represented by a linear combi-
nation of deterministic functions fl with

m(x) =

L∑
l=0

alfl(x). (25)
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It is further assumed that the functions fl build a translation in-
variant vector space and that the variance of the linear combina-
tion of fl is given by a linear combination of a symmetric gener-
alized covariance function1

V [

n∑
α=0

wαZ(xα)] =

n∑
α=1

n∑
β=1

wαwβK(xα − xβ). (26)

Based on the generalized covariance function the intrinsic kriging
system can be build with(

K F
F ′ 0

)(
w
−µ

)
=

(
k
−f

)
(27)

where K = (Kij) = (K(xi − xj)), F = (Fij) = (fj(xi)),
k = (ki) = (K(xi − x0)) and f = (fi) = (fi(x0)).

The kriging equations are dependent on the position of interpo-
lation x0 and thus have to be solved for every position. Alterna-
tively the dual kriging system with the vector of the data z (coor-
dinates of realizations) can be derived, which is independent from
the interpolation position and thus has to be solved only once.(

K F
F ′ 0

)(
b
d

)
=

(
z
0

)
. (28)

As a solution to the system we obtain

d = (F ′K−1F )−1F ′K−1z (29)
b = K−1(z − Fd) (30)

and the interpolation (prediction) of a value of the true map is
finally done with

z∗(x) = b′kx + d′fx. (31)

Intrinsic kriging in the form of (28) is an exact interpolator. It
can be extended by a spatially independent random noise (obser-
vational error) to the model

Z(x) = m(x) + R(x) = m(x) + S(x) + ε, (32)
with C[R(x + h), R(x)] = K(h), (33)

Σεε = diag(σ2
1 , . . . , σ2

n). (34)

The dual kriging system of intrinsic kriging with random error
can be derived from (28) by adding the variance matrix Σεε of
the random error to the spatial covariance matrix K.

5.7 Least squares collocation

The method of least squares collocation has already been sug-
gested for residual spreading in transformation problems (Moritz,
1973). The collocation model consists of a random vector y that
is explained by a linear mapping of unknown parameters Xβ, a
random vector s (signal), a random vector of observational errors
n with

y = Xβ + s + n (35)

and the expectation value of the signal and the random error E[s] =
0 and E[n] = 0. Signal and random error are uncorrelated
Σsn = 0 and the covariance matrices are given with C[s, s] =
Σss and C[n, n] = Σnn.

1For a detailed definition of the intrinsic random function of order k
we refer to (Wackernagel, 1998).

The signal s is a deterministic part of the realization of a map.
For repeated measurements of coordinates it will be constant. It
is treated as a stochastical random variable with known expecta-
tion value, as we have no precise knowledge about its analytical
nature.

The solution of the collocation model for the parameter vector β
and the signal s is given by (Moritz, 1973, Koch, 1997)

β̂ = (X ′(Σss + Σnn)−1X)−1X ′(Σss + Σnn)−1y (36)

ŝ = Σss(Σss + Σnn)−1(y −Xβ̂). (37)

The comparison of this solution with the solution of the kriging
system (29) and (30) shows the formal correspondence of both
approaches.

The prediction of observations y∗ at a position x0 can be done
with the design matrix X∗

x0 and the covariance matrix of the pre-
dicted signal s∗ at the position x0 and the signal at the observed
positions s with C[s∗, s] = Σs∗s and

ŷ∗ = ŝ∗ + X∗β̂ = Σs∗sb + X∗β̂ with (38)
b = (Σss + Σnn)−1(y −Xβ̂). (39)

6 DETERMINISTIC MODELS FOR GEOMETRICAL IN-
TEGRATION

6.1 Formal definition of the homogenization problem

In the deterministic model we define the problem of the determi-
nation of the mapping T from the true map to its realization as
follows:

Definition 6.1 (Homogenisation) Given are a realization of a
map k, the corresponding true map Kw and two sets of points
P k ⊆ k and P w ⊆ Kw out of k and Kw. A bijection b :
P w → P k is given so that every point of P w corresponds to ex-
actly one point in P k. Further a set of geometrical constraints
C = {c1, . . . , cn} with ci : <3 → < is defined on the points.
The construction of a homeomorphism h : k → Kw, that does
fulfill the bijection b and the geometrical constraints C we call
homogenization of the realization k and its true map Kw.

In the above definition geometrical constraints are defined as non-
linear scalar functions on <3. All kinds of constraints that relate
to a metric or angular quantity can be defined on the base of these
equations. Examples are

• distance of (point-point), (point-line), (point-plane), (line-
line), (line-plane), (plane-plane) etc.

• angle between (line-line), (line-plane), (plane-plane) etc.

Some types of topological constraints can not be translated into
an equation based on a metric quantity. An example for this is a
containment relation between a point and a cube. For this class
of problems the definition 6.1 has to be extended to constraints
given as inequality equations.

For the case of multiple realizations the definition can easily be
extended. Additional constraints like links for homologous points
of neighboring realizations and geometrical constraints with ref-
erences to points from multiple realizations can occur in those
cases.
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6.2 Construction of T in the deterministic model

The problem of constructing a homeomorphism for a given bi-
jection of points is also known as rubber sheeting. There exist a
number of different exact interpolation techniques that have been
proposed for rubber sheeting in the past. Among them are

• the inverse distance weighted interpolation (Shepard, 1964,
Hettwer, 2003),

• the piecewise linear transformation in triangles (Merkel, 1932,
White and Griffen, 1985, Fagan and Soehngen, 1987, Gill-
man, 1985, Saalfeld, 1985),

• the natural neighbor interpolation (Sibson, 1981, Owen, 1992,
Roschlaub, 1999, Hettwer and Benning, 2003),

• the multiquadratic method (Hardy, 1972, Göpfert, 1977, Wolf,
1981) and

• the thin plate spline interpolation (Bookstein, 1989).

A comparison of these techniques in the context of general inter-
polation problems can be found in (Mitas and Mitasova, 1999).

It can be shown that the interpolation techniques based on radial
basis functions (multiquadratic and thin plate spline) are equiva-
lent to intrinsic kriging without random error (Wackernagel, 1998,
Kampshoff, 2005). If a random error is added to the deterministic
models, full correspondence is achieved, whereby the covariance
function in the stochastical model corresponds to the kernel ma-
trix of the radial basis functions in the deterministic case.

From fig. (5) it can be seen, that the interpolations based on radial
basis functions are able to reproduce non-linear smooth surfaces
from scattered data points. The drawback of these techniques is
their high computational complexity, as a dense system of linear
equations has to be solved.

(a) (b)

(c) (d)
Figure 5: (a) original (b) inverse distance (c) thin plate spline (d)
multiquadratic ( AHMED ET.AL.)

The only interpolation technique, that can be proved to be a home-
omorphism is the linear interpolation in triangles. A solution to

this homeomorphism extension problem in 2-D is given in (Saalfeld,
1993). Furthermore the linear interpolation in triangles can be
performed in o(nlog(n)) operations in 2-D2. The resulting trans-
form is continuous, but not differentiable as it has blips at the
edges of the triangles.

The natural neighbor interpolation appears to be a good compro-
mise between the interpolations with radial basis functions and
the linear interpolation in triangles. It is a smooth interpolator
and differentiable everywhere besides in homologous data points.
The delaunay triangulation of the points can be computed in lin-
ear time for equally distributed point sets (Tsai, 1993), and the
interpolation of coordinate values can be performed in constant
time, if a spatial index is used.

7 COMPARISON, EXTENSION AND INTEGRATION OF
BOTH APPROACHES

7.1 Exact or approximate interpolation?

The main difference between the stochastical an deterministic ap-
proaches lies in the consideration of a spatially uncorrelated ran-
dom error in the data points. The stochastical models do not re-
produce the values of the true map, as the random error is filtered
in these locations. At first sight this seems to be a drawback of
the stochastical models. Anyway, if we keep in mind the prob-
lem of the maintenance of associativity in the map, only those
parts of the residual function should be transfered (interpolated)
to neighboring points, that show a spatial correlation.

wK

k

point in
realization k

point in true
map K w

measurement error
(random)

signal
(systematic)absolute error

signal in
realization k

Figure 6: Residuals consisting of a random uncorrelated
error and a correlated signal

Thus, as can be seen from figure (6), only the (filtered) signal
should be used for interpolation. The random error can not be
assumed be of similar size and direction for neighboring points.

In general the stochastical model should therefore be used to
solve the integration problem, as simple rubber sheeting leads
to a spreading of random errors in the map. Nonetheless, exact
deterministic interpolators can be applied when the random error
is of neglectable magnitude compared to signal.

7.2 Extensions for geometrical constraints

There are basically two ways to integrate geometrical constraints
into our map models: the sequential and the simultaneous ap-
proach.

The sequential approach consists of two separate steps. In the first
step the interpolation problem is solved by one of the described

2This will be sufficient for 2.5D graph-surfaces
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interpolation techniques (rubber sheeting). In a second indepen-
dent step the realization of geometrical constraints is performed
by a least squares adjustment, as there can be contradictions in
the definition of the constraints. Due to the independence of both
steps, the realization of the geometrical constraints may lead to
inconsistencies in the map. In particular it is possible that a subset
of points is strongly moved in step two, which leads to a decrease
of the relative spatial accuracy for those points not included in the
constraints.

A consistent geometrical integration can only be achieved if the
maintenance of the relative spatial accuracy (interpolation) and
the realization of geometrical constraints are done simultaneously.
This can be reached by an extension of the collocation model.
First we reformulate the collocation model as a Gauß-Markoff-
Model (Koch, 1997)

E[

(
yh

0

)
] =

(
Xt I
0 I

)(
βt

sh

)
with (40)

D[

(
yh

0

)
] = σ2

(
Σyhyh 0

0 Σshsh

)
. (41)

This reformulation enables us to add the unknown coordinates of
the true map as unknown parameters in the vector βn and the
additional observation equations for those points

f(xw
n , βt) = Xn

t βt + Xnβn + sn = yn + en. (42)

These additional observations do not lead to a change in the es-
timates of the collocation model, as for every observation a new
unknown parameter is defined (no increased redundancy).

The model can easily be extended with additional observations
for geometrical constraints

b(βn) = Xbβn = yb + eb (43)

and we finally obtain the extended collocation model with a spa-
tially correlated signal, a random observational error and obser-
vations for geometrical constraints with

E[


yh

0
yn

yb

0

] =


Xt I 0 0
0 I 0 0

Xn
t 0 Xn I

0 0 Xb 0
0 0 0 I


 βt

sh

βn

sn

 (44)

D[


yh

0
yn

yb

0

] = (45)


Σyhyh 0 0 0 0

0 Σshsh 0 0 Σshsn

0 0 Σynyn 0 0
0 0 0 Σybyb 0
0 Σsnsh 0 0 Σsnsn

 .

It is possible to extend this model for the integration of multiple
realizations of maps. For each map a new transformation block
with a separate signal and covariance matrix is introduced.

7.3 Scalability and the hybrid approach

For the integration of mass data it is important to choose a scal-
able approach. The scalability of the solution of (44) is deter-
mined by the covariance matrix of the signal, which typically is a

dense matrix. An obvious improvement is thus to determine the
signal externally by an efficient approach like natural neighbor
interpolation. The results of the interpolated signal r∗i can then
be integrated into a simplified stochastical model by uncorrelated
observations, that replace the correlated signal in (44).

The difficulty lies in the choice of the observational model for the
introduction of the interpolated signal. Direct observation, like

r∗i − ri = r∗i − (Xi
tβt + Xi

nβn − yi) = 0 + ei, (46)

imply the negative effects of the sequential approach. Therefore
BENNING suggests the introduction of differential observations
between neighboring points with (Benning, 1995)

∆xj −∆xi − (r∗j − r∗i ) = 0 + e. (47)

The definition of neighborhood is taken from the edges of a delau-
nay triangulation of the points. Equation (47) can be interpreted
as the difference of the distance vector hij = xw

j − xw
i of the

estimated coordinates from the vector h∗
ij which results from the

deterministic interpolation. Thus, if no geometrical constraints
are defined, the result of the adjustment will be congruent with
the result of the deterministic interpolation of the signal. If, on
the other hand, geometrical constraints lead to a displacement of
points, the difference equations (47) ensure the maintenance of
relative spatial accuracy in the map.

The complete model of the hybrid approach is given by Xt 0
Xn

t Xn

0 Xb

0 X∆

(
βt

βn

)
= E[

 yh

yn

yb

0

] (48)

D[

 yh

yn

yb

y∆

] =

 Σyhyh 0 0 0
0 Σynyn 0 0
0 0 Σybyb 0
0 0 0 Σ∆∆

 .(49)

The normal equations of the hybrid approach result in a sparse
matrix, that can be solved efficiently for large datasets with more
than 106 unknown parameters (Kampshoff and Benning, 2005).
A further improvement of the scalability can be achieved by a
fragmentation of the dataset into zones or layers that are treated
individually (Kampshoff, 2005).

8 CONCLUSIONS

On the basis of a theoretical analysis of the absolute and rela-
tive accuracy in spatial datasets we have derived a mathemati-
cal model for geometrical integration, that allows us to simulta-
neously integrate heterogeneous spatial objects from fragmented
sources into one consistent dataset. The model can be applied
to large integration problems, and is therefore suitable for prob-
lems of positional accuracy improvement of spatial datasets like
3-D city models. The hybrid approach is superior to a sequen-
tial combination of rubber sheeting techniques and adjustment of
geometrical constraints, as the associativity of the data is consis-
tently considered in the whole process. In the hybrid approach
the estimation of the unknown coordinates is done in a stochas-
tical model that allows us to asses the quality of the data and to
apply statistical outlier tests.
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